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Abstract: Introduction: Gait features differ between Parkinson’s disease (PD) and healthy subjects
(HS). Kinematic alterations of gait include reduced gait speed, swing time, and stride length between
PD patients and HS. Stride time and swing time variability are increased in PD patients with respect to
HS. Additionally, dynamic parameters of asymmetry of gait are significantly different among the two
groups. The aim of the present study is to evaluate which kind of gait analysis (dynamic or kinematic)
is more informative to discriminate PD and HS gait features. Methods: In the present study, we
analyzed gait dynamic and kinematic features of 108 PD patients and 88 HS from four cohorts of
two datasets. Results: Kinematic features showed statistically significant differences among PD
patients and HS for gait speed and time Up and Go test and for selected kinematic dispersion indices
(standard deviation and interquartile range of swing, stance, and double support time). Dynamic
features did not show any statistically significant difference between PD patients and HS. Discussion:
Despite kinematics features like acceleration being directly proportional to dynamic features like
ground reaction force, the results of this study showed the so-called force/rhythm dichotomy since
kinematic features were more informative than dynamic ones.

Keywords: Parkinson’s disease; gait analysis; diagnosis; wearable; kinematic analysis; dynamic analysis

1. Introduction

Parkinson’s disease (PD) diagnosis and symptoms monitoring rely mainly on clinical
evaluation of the cardinal motor symptoms (bradykinesia, rest tremor, and rigidity) [1,2].
To date, following the in vivo diagnostic criteria [3], the error rate is about 20% [4]. This
is mainly due to the lack of objective biomarkers for the in vivo diagnosis of Parkin-
son’s disease.

Wearable motion sensors are a promising solution to objectively describe PD motor
symptoms [5,6], like bradykinesia [7–9], rigidity [9–12], tremor [13–16], and axial symptoms
like gait, balance, and postural issues [17–21]. In addition, the symptom identification
process through motion sensors [22] could also improve the therapy management pro-
cess [23]. Generally speaking, body motion can be analyzed from two different points of
view: kinetics (dynamics) analysis, which takes into account the forces that generate the
motion and their effect on the body. On the other hand, kinematic analysis, defined as
the geometry of motion, describes the movement of the body in terms of position, time,
velocity, acceleration, or angle of body segments (Figure 1) [21,24,25].

In literature, kinematic analysis in PD patients showed that the stride variability is
increased, and the ability to maintain a steady gait rhythm and a stable, steady walking
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pattern with minimal stride-to-stride changes is impaired [26–29]. PD patients show de-
creased swing time and reduced stride length compared to controls and stride time, i.e., the
gait cycle durations is increased with respect to control group but not significantly different,
while stride-to-stride variability is increased significantly from the control group [30].
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Figure 1. Gait kinetics (upper figure) and kinematics features (lower figure) (modified under the
terms and conditions of the Creative Commons Attribution (CC BY) license from [21]).

Increased stride variability has been associated with an increased fall risk in older
adults in general, as well as in patients with PD [31–33], suggesting that this aspect of gait
may have clinical utility as an aid in fall risk assessment.

On the dynamics analysis side, the features studied are the forces that cause the
motion and their effect on gait. During the stance phase, where feet are in contact with the
ground, a level of center of pressure (CoP) is applied the ground reaction force (GRF) which
represents the results of gravity force and muscular activation forces counterbalanced by
the contact with ground [21,24,25]. Gait dynamics studies have highlighted how some
features of GRF vary in different phases of PD, while others are preserved. Components of
the GRF are the peak-force at the heel-strike and at toe-off. In the novo early PD there is a
delayed heel-strike and an earlier forefoot loading. These parameters seems to be altered
independently from the stages of the disease or the pharmacotherapy, instead representing
an early marker of the disease [34]. GRF measurement could also be useful to determine
gait asymmetry. Su et al. [35] demonstrated how VGRF can reveal the asymmetry of gait by
comparing the VGRF of both lower limbs between PD patients and healthy controls. Results
showed that PD group has a higher degree of gait asymmetry of the GRF wavelet profile
compared to healthy subjects [35]. This metric, compared to conventional asymmetry
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measures of kinematic features, like step time, stance time, double stance time, or dynamic
features like the two peak and the one dep forces of GRF profile, all resulting with higher
asymmetry compared to healthy subjects but with lower diagnostic accuracy [35].

The aim of the present study is to evaluate which kind of gait analysis (dynamic
or kinematic) can be considered as more informative for discriminating PD and healthy
subjects (HS) on the basis of gait features.

2. Materials and Methods
2.1. Subjects

For the present study, gait data were collected for a total of 108 PD patients and 88 HS
from four cohorts [36–38] collected in two publicly available datasets [37,38] (Table 1).

For all the four cohorts, inclusion criteria for Parkinson’s disease patients were: idio-
pathic PD diagnosis, according to the UK Brain Bank criteria [39], and Hoehn and Yahr stage
between 2 and 3 [40], a stable antiparkinsonian medication regimen, ability to ambulate
independently, and absence of motor fluctuations. Control subjects were included if they
did not have Parkinson’s disease or other common exclusion criteria for the Parkinson’s
disease group: dementia, clinically significant musculo-skeletal disease, cardio-vascular
disease, respiratory disease, other neurological disease, major depression, or uncorrected
visual disturbances.

Table 1. Composition of cohorts.

Ref Cohort Dataset Data Source Group Subjects
Number Gender Age

(m ± SD)

Hoehn
and Yahr
(m ± SD)

UPDRS
(m ± SD)

[36] 1 1
Movement Disorders
Unit at the Tel-Aviv
Sourasky Medical Center

PD 29 69% male 71 ± 8 2.3 ± 0.4 33 ± 12

HS 18 56% male 72 ± 7

[37] 2 1
Movement Disorders
Unit at the Tel Aviv
Sourasky Medical Center

PD 29 55% male 67 ± 9 2.4 ± 0.4 25 ± 8

HS 25 46% male 65 ± 7

[30] 3 1
Movement Disorders
Unit at the Tel-Aviv
Sourasky Medical Center.

PD 35 63% male 62 ± 9 2.1 ± 0.2 36 ± 11

HS 29 62% male 58 ± 7

[38] 4 2
Neurology Outpatient
Clinic at Massachusetts
General Hospital.

PD 15 67% male 67 ± 11 2.8 ± 0.9

HS 16 13% male 39 ± 19

Legend: HS: healthy subjects, Hoehn and Yahr scale [41] is a clinical scale that describes the PD stage from 1
(unilateral body involvement) to 5 (confinement to bed or wheelchair), IQR: interquartile range, med: median, PD:
Parkinson’s disease patients, m ± SD: mean ± standard deviation, UPDRS total: Unified Parkinson’s Disease
Rating Scale [42] is a clinical scale used to follow Parkinson’s disease symptoms during the disease course.

The first dataset (cohort 1 [36], 2 [37], 3 [30]) was composed of 93 PD patients and
72 HS, while the second dataset (cohort 4) [38] was composed of 15 PD patients and 16 HS.
Regarding the demographic analysis cohorts 1, 2, and 3, the 72 HS are age-matched with
PD patients. For cohort 4 the 16 HS are younger than PD patients, therefore, although
mitigated by the 72 age-matched HS from the other cohorts, we need to take it into account
as a possible bias of the study. For all the four cohorts, for both Parkinson’s disease patients
and HS, gait-related data were collected through an instrumented force-sensitive insole [43]
placed in subjects’ shoes, containing each eight pressure-sensitive sensors (Figure 2), thus
allowing the experimenters to record the time series of the GRF while subjects were asked
to walk on level ground. In the first and third cohort subjects walked for two minutes, in
the second cohort for 100 m (around 80 s), and in the fourth cohort for 5 min. Considering
that in each cohort PD and HS walked with the same protocol, and that around 10 m or 10 s
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of gait recording are sufficient to catch the gait pattern in PD and HS, the data available in
the four cohorts are sufficient to describe the gait kinematic and dynamic. However, the
inhomogeneity of gait duration protocol across cohorts should be considered as a limit of
the present study.

All patients gave informed consent, and the study was approved by local research
ethics committees in accordance with the Declaration of Helsinki.
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Figure 2. Force-sensitive insole. Each insole placed in subjects’ shoes contains eight pressure-sensitive
sensors in order to record the time series of the ground reaction force (GRF), while subjects were
asked to walk on level ground.

2.2. Data Analysis

In the first dataset, only the gait dynamic data were available. Therefore, in order to
analyze kinematic data, the recorded GRF signals were used to segment the single gait
cycle periods for each patient.

According to Figure 3, the segmentation of the gait cycle was implemented using the
differential Ground Reaction Force (GRF) (δ) between total right force and total left force:

δ = R f oot,tot − L f oot,tot (1)

In (Equation (1)), R f oot,tot and L f oot,tot denote the sum of the forces (expressed in
newton) measured by all the sensors embedded in the insole worn under the right foot and
the left foot, respectively.

On the basis of δ, each gait cycle for each patient was selected between the first double
limb support (DLS) and the left single limb support (SLS-L) (Figure 3).

For each cycle, we computed the following parameters related to the gait:

• Right and Left Stance, expressed both in seconds and as percentage of the stride length;
• Right and Left Swing, expressed both in seconds and as percentage of the stride length;
• Double Limb Supports, expressed both in seconds and as percentage of the stride length
• Right and Left Single Limb Supports, expressed both in seconds and as percentage of

the stride length;
• Right and Left Step Duration, expressed both in seconds and as percentage of the

stride length;
• Gait velocity expressed in m/s
• Time up and go test expressed in seconds

Such parameters were then averaged along all cycles for each subject.
Moreover, in order to remove single cycle outliers, we compared the duration of

each cycle (i.e., stride length) with the average duration (SL) computed for each subject.
To this aim, we marked and then discarded all those cycles whose duration was higher
then SL + 2·SD(SL), denoting with SD(SL) the standard deviation of the stride length of
all cycles.
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Figure 3. Segmentation of the gait cycle implemented using the differential ground reaction force
(GRF) between total right force and total left force. DLS: double limb support, GRF: ground reaction
force, SLS-L: left single limb support, SLS-R: right single limb support.

Considering the second dataset [38,39], two sources of data were available: raw data
of the instrumented insoles (containing the whole gait dynamics) and the processed data
already containing gait interval parameters (gait kinematics). Therefore, considering the
second dataset, no further data manipulation was performed.

For the sake of simplicity, we summarized the main data manipulation steps performed
with the two datasets in Table 2.

Table 2. Overview of the main data manipulation steps.

First Dataset
Cohort 1-2-3

Second Dataset
Cohort 4

Type of Data Available

• raw data of the instrumented insoles (gait dynamics) • raw data of the instrumented insoles (gait dynamics)
• gait interval parameters (gait kinematics)

Data Manipulation

Kinematic Analysis:

1. Calculation of the differential ground reaction force (δ).
2. Extrapolation of the DLS and SLS parameters.
3. Calculation of the gait cycles and the main kinematic

parameters (see Figure 1)
4. Normalization with respect to gait cycle.

Kinematic Analysis:

• Kinematic parameters were already available; thus no
further data manipulation was performed.

Dynamic Analysis:

• Dynamic data already available, thus no further data ma-
nipulation was performed.

Dynamic Analysis:

• Dynamic data available but expressed as raw signals of the
instrumented insoles (expressed in volt). Thus, a
normalization of the raw signals was performed in order
with respect the maximal output of the electronic system
composing the insole (according to [43]).
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2.3. Dynamic Analysis

In order to estimate the force applied during the gait, we used the raw data of the
instrumented insoles from both datasets. However, the data available within the second
dataset were not calibrated, i.e., they were expressed in volts. Therefore, in order to compare
the data between the two group of subjects, we divided the recorded signals by the maximal
output of the electronic system composing the insole, according to [43]. This allowed us
to obtain signals expressed in percentage of the maximal detectable force by the insole.
For comparing the two groups (PD vs. HS), we computed the following central tendency
and dispersion features: (1) mean, (2) standard deviation (SD), (3) median, (4) interquartile
range (IQR). We computed such features along the whole trial duration, for each subject
and each group, and we used t-test analysis to statistically test the difference between the
two groups.

2.4. Kinematic Analysis

The following gait kinematic parameters were included in the analysis:

• Right and Left Stance, expressed both in seconds and as percentage of the stride length;
• Right and Left Swing, expressed both in seconds and as percentage of the stride length;
• Double Limb Supports, expressed both in seconds and as percentage of the stride length;
• Gait velocity expressed in m/s
• Time up and go test expressed in seconds

Similar to the data analysis presented in Section 2.3 from the raw force data, we
computed the following central tendency and dispersion features for the gait kinematics
parameters: (1) average (ave), (2) standard deviation (SD), (3) median (med), (4) interquar-
tile range (IQR). We computed such features along the whole trial duration for each subject
and each group, and we used t-test analysis to statistically test the difference between the
two groups.

For both kinematic and dynamic analysis, Bonferroni correction was applied, consid-
ering a correction factor of 50, deriving from the number of dynamic and kinematic param-
eters. Therefore, the statistically significant value (p) threshold is equal to 0.001 (0.05/50).

3. Results
3.1. Kinematic Analysis

Considering the central tendency indices related to Gait Speed and Time Up and
Go test, t-tests showed a significant difference between HS and PD (p < 0.001) (Table 3,
Figure 4), while all other kinematic central tendency indices t-test showed a non-significant
difference in HS and PD (Table 2).

Moreover, t-tests showed a significant difference in HS and PD (p < 0.001) (Table 2,
Figure 4) considering the dispersion indices computed for the following parameters:

- Standard deviation (SD) left and right SWING absolute and percentage value
- Standard deviation (SD) left and right STANCE percentage value
- Standard deviation (SD) DOUBLE SUPPORT percentage value
- Interquartile range (IQR) left and right SWING absolute and percentage value
- Interquartile range (IQR) left and right STANCE absolute and percentage value
- Interquartile range (IQR) DOUBLE SUPPORT percentage value

Conversely, for the other kinematic dispersion indices, t-test showed a non-significant
difference between HS and PD (Table 2).
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Table 3. Kinematic central tendency and dispersion indices.

Variables Group N Average Standard
Deviation t df p Value

K
in

em
at

ic

ce
nt

ra
lt

en
de

nc
y

in
di

ce
s

Gait Speed (m/s)
HS 88 1.260 0.166

8.278 194 <0.001 *
PD 108 1.019 0.227

Time Up and Go (s)
HS 62 9.300 1.604

−5.187 150 <0.001 *
PD 90 12.056 3.962

Ave left SWING
HS 88 0.442 0.040

0.361 194 0.719
PD 108 0.439 0.046

Ave right SWING
HS 88 0.443 0.041

1.158 194 0.248
PD 108 0.435 0.047

Ave left SWING %
HS 88 41.804 3.143

1.951 194 0.053
PD 108 40.781 4.018

Ave right SWING %
HS 88 41.916 3.488

2.682 194 0.008
PD 108 40.395 4.284

Ave left STANCE
HS 88 0.618 0.071

−2.127 194 0.035
PD 108 0.646 0.109

Ave right STANCE
HS 88 0.616 0.074

−2.431 194 0.016
PD 108 0.650 0.109

Ave left STANCE %
HS 88 58.196 3.143

−1.951 194 0.053
PD 108 59.219 4.018

Ave right STANCE %
HS 88 58.084 3.488

−2.682 194 0.008
PD 108 59.605 4.284

Ave DOUBLE SUPPORT
HS 88 0.115 0.095

−1.106 194 0.270
PD 108 0.133 0.120

Ave DOUBLE SUPPORT %
HS 88 10.681 8.528

−0.808 194 0.420
PD 108 11.734 9.492

Med left SWING
HS 88 0.441 0.040

0.123 194 0.902
PD 108 0.440 0.048

Med right SWING
HS 88 0.442 0.041

0.963 194 0.337
PD 108 0.436 0.047

Med left SWING %
HS 88 41.999 3.195

1.844 194 0.067
PD 108 41.029 4.003

Med right SWING %
HS 88 42.064 3.487

2.502 194 0.013
PD 108 40.655 4.240

Med left STANCE
HS 88 0.611 0.069

−2.043 194 0.042
PD 108 0.638 0.106

Med right STANCE
HS 88 0.611 0.073

−2.303 194 0.022
PD 108 0.642 0.106

Med left STANCE %
HS 88 58.001 3.195

−1.844 194 0.067
PD 108 58.971 4.003

Med right STANCE %
HS 88 57.936 3.487

−2.502 194 0.013
PD 108 59.345 4.240

Med DOUBLE SUPPORT
HS 88 0.113 0.094

−0.943 194 0.347
PD 108 0.127 0.110

Med DOUBLE SUPPORT%
HS 88 10.483 8.518

−0.742 194 0.459
PD 108 11.441 9.368
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Table 3. Cont.

Variables Group N Average Standard
Deviation t df p Value

SD left SWING
HS 88 0.022 0.009

−4.851 194 <0.001 *
PD 108 0.032 0.017

K
in

em
at

ic

ce
nt

ra
lt

en
de

nc
y

in
di

ce
s

SD right SWING
HS 88 0.022 0.008

−4.357 194 <0.001 *
PD 108 0.034 0.025

SD left SWING %
HS 88 1.686 0.762

−4.400 194 <0.001 *
PD 108 2.357 1.254

SD right SWING %
HS 88 1.568 0.613

−6.093 194 <0.001 *
PD 108 2.383 1.127

SD left STANCE
HS 88 0.035 0.016

−1.640 194 0.103
PD 108 0.065 0.170

SD right STANCE
HS 88 0.033 0.014

−1.736 194 0.084
PD 108 0.058 0.135

SD left STANCE %
HS 88 1.686 0.762

−4.400 194 <0.001 *
PD 108 2.357 1.254

SD right STANCE %
HS 88 1.568 0.613

−6.093 194 <0.001 *
PD 108 2.383 1.127

SD DOUBLE SUPPORT
HS 88 0.019 0.015

−1.441 194 0.151
PD 108 0.045 0.171

SD DOUBLE SUPPORT %
HS 88 1.386 0.718

−3.396 194 <0.001 *
PD 108 2.072 1.780

IQR left SWING
HS 88 0.017 0.006

−6.651 194 <0.001 *
PD 108 0.027 0.014

IQR right SWING
HS 88 0.017 0.006

−5.821 194 <0.001 *
PD 108 0.027 0.016

IQR left SWING %
HS 88 1.326 0.323

−6.279 194 <0.001 *
PD 108 1.896 0.799

IQR right SWING %
HS 88 1.229 0.337

−7.009 194 <0.001 *
PD 108 1.905 0.852

IQR left STANCE
HS 88 0.026 0.009

−4.577 194 <0.001 *
PD 108 0.037 0.020

IQR right STANCE
HS 88 0.026 0.009

−4.902 194 <0.001 *
PD 108 0.037 0.020

IQR left STANCE %
HS 88 1.326 0.323

−6.279 194 <0.001 *
PD 108 1.896 0.799

IQR right STANCE %
HS 88 1.229 0.337

−7.009 194 <0.001 *
PD 108 1.905 0.852

IQR DOUBLE SUPPORT
HS 88 0.013 0.008

−2.875 194 0.004
PD 108 0.018 0.014

IQR_DOUBLE_SUPPORT %
HS 88 1.141 0.502

−3.446 194 <0.001 *
PD 108 1.613 1.203

Legend: ave: average, HS: healthy subjects, IQR: interquartile range, med: median, PD: Parkinson’s disease
patients, SD: standard deviation, *: t-test statistically significant p-value.
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ROC Analysis

A ROC analysis was performed for all kinematic values which showed a significant
t-test difference in HS and PD. It was implemented considering a diagnosis of PD over
HS as the target (Figure 5). The value of AUC with upper and lower limits (95% C.I.), the
standard error, and the p value are listed in Table 4.

As shown in Figure 5 and Table 4, with the exception of “IQR left STANCE”, and
“IQR DOUBLE SUPPORT %”, all the kinematic predictors analysed showed a statistically
significant ROC AUC value in the discrimination between diagnosis of PD over HS.



Sensors 2022, 22, 8773 10 of 15

Table 4. ROC analysis of statistically significant kinematic features.

Variables AUC Standard Error p Value Lower Limit Upper Limit

Gait Speed (m/s) 0.200 0.035 <0.001 * 0.130 0.269

Time Up and Go (s) 0.801 0.036 <0.001 * 0.730 0.872

SD left SWING 0.682 0.044 <0.001 * 0.595 0.768

SD right SWING 0.703 0.043 <0.001 * 0.620 0.787

SD left SWING % 0.674 0.045 <0.001 * 0.585 0.763

SD right SWING % 0.740 0.041 <0.001 * 0.660 0.819

SD left STANCE % 0.674 0.045 <0.001 * 0.585 0.763

SD right STANCE % 0.740 0.041 <0.001 * 0.660 0.819

SD DOUBLE SUPPORT% 0.643 0.039 <0.001 * 0.566 0.720

IQR left SWING 0.778 0.037 <0.001 * 0.704 0.851

IQR right SWING 0.733 0.041 <0.001 * 0.654 0.813

IQR left SWING % 0.776 0.037 <0.001 * 0.703 0.848

IQR right SWING % 0.820 0.034 <0.001 * 0.754 0.886

IQR left STANCE 0.639 0.045 0.0036 0.551 0.727

IQR right STANCE 0.667 0.044 <0.001 * 0.580 0.754

IQR left STANCE % 0.776 0.037 <0.001 * 0.703 0.848

IQR right STANCE % 0.820 0.034 <0.001 * 0.754 0.886

IQR DOUBLE SUPPORT % 0.634 0.040 0.0012 0.556 0.712

Legend: IQR: interquartile range, SD: standard deviation, * ROC: statistically significant p-value.
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3.2. Dynamic Analysis

For all the dynamic central and dispersion indices, t-test showed a non-significant
difference in HS and PD (p > 0.001) (Table 5).
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Table 5. Dynamic central tendency and dispersion indices.

Variables Group N Average Standard Deviation t df p Value

dy
na

m
ic ce

nt
ra

lt
en

de
nc

y
in

di
ce

s Ave Force left
HS 88 372.346 181.982

−0.813 194 0.417
PD 108 392.385 162.683

Ave Force right
HS 88 369.036 181.877

−1.044 194 0.298
PD 108 394.455 158.804

Med Force left
HS 88 467.395 235.065

−0.537 194 0.592
PD 108 484.518 210.938

Med Force right
HS 88 459.291 235.530

−1.025 194 0.307
PD 108 491.887 209.364

di
sp

er
si

on
in

di
ce

s

SD Force left
HS 88 324.871 160.322

−0.561 194 0.576
PD 108 336.977 141.656

SD Force right
HS 88 324.106 160.490

−0.608 194 0.544
PD 108 337.011 136.732

IQR Force left
HS 88 671.779 332.736

−0.764 194 0.446
PD 108 706.230 297.570

IQR Force right
HS 88 671.246 332.261

−0.877 194 0.382
PD 108 710.175 288.892

Legend: ave: average, HS: healthy subjects, IQR: interquartile range, med: median, PD: Parkinson’s disease
patients, SD: standard deviation.

In Figures 6 and 7 (and Supplementary Video S1), the average gait cycle dynamic,
respectively, in HS and PD groups are summarized, showing no difference in gait cycle
dynamic profile in the two groups.
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The bottom part of the figure represents a graphical visualization of the force measured by the single
sensors embedded within the instrumented insole: the larger the circles (right red; left green), the
larger the force measured.
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Figure 7. Parkinson’s disease gait dynamic. Right (R tot) (red line) and Left (L tot) (green line) total
force averaged along gait cycles (GC) and subjects over the percentage of completion of the gait cycle
(top). The bottom part of the figure represents a graphical visualization of the force measured by the
single sensors embedded within the instrumented insole: the larger the circles (right red; left green),
the larger the force measured.

4. Discussion

Gait features differ between PD patients and HS under normal conditions. In this
article we compared the kinematic and dynamic markers of gait between PD patients and
HS. The statistical analyses related to the kinematic parameters showed significant differ-
ences among PD patients and HS for gait speed and time Up and Go test, and for selected
kinematic dispersion indices, with statistically significant ROC AUC values indicating
good discrimination ability between the two groups of these parameters. These results are
in line with literature data showing an increased stride-to-stride variability in PD patients
compared to HS [26–30]. This may reflect mechanisms that underline disease pathology,
such as reduced automaticity and damaged locomotor synergies. Indeed, different studies
showed that stride variability is reduced by levodopa therapy, demonstrating the role of
dopaminergic pathways in the gait rhythmicity [27,28,44–46]. Moreover, increased gait
variability could be a byproduct of bradykinesia and of a lower gait speed. In literature,
no significant increase in stride time variability was observed in healthy elderly subjects,
even though they walked significantly slower than young adults [47–49]. Several studies
aimed to define the relationship between gait speed and stride time variability. Gait speed
seems to be related to stride length, stride time, swing time, and stride time variability,
with similar relationships in patients with PD and in controls. A U-shaped relationship
between stride length variability and gait speed was described when healthy subjects
walked on a treadmill [50]. Other studies observed a linear relationship between gait speed
and stride time variability, and the range of walking speeds tested and differences in study
populations may explain this apparent contradiction [51]. Indeed, mechanical and energy
expenditure optimizations may be affected by aging and disease [52]. Interestingly, in a
study of young and older adults, it was reported that gait speed did not affect the variability
of walking velocity, stride length, or stride time [53]. The increased swing time variability
in PD is apparently independent of gait speed. Furthermore, even when patients with PD
walk at the same speed as controls, swing time variability is increased in PD [51].

In our study dynamic features did not show any statistically significant difference
between PD patients and HS. The reason for the differences between kinematic and dynamic
analysis, from which kinematic parameters seem to be more sensitive to identify PD patient
features with respect to HS, could be found in the dynamic analysis technique. For dynamic
analysis, GRF has several characteristics that make it suitable for gait study. Above all, the
acceleration of the center of gravity of the body (COM) is directly proportional to the GRF,
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which implies that many gait features can be extracted from the GRF. GRF is a continuous
signal, unlike kinematic parameters such as oscillation time or stride length, which are
considered discrete variables. A great advantage of continuous signals is the possibility
of being characterized in terms of time and frequency. However, to simplify the cost and
complexity of instrumental devices, only the vertical component of the GRF (VGRF) is
usually measured. VGRF is the component of the force with the greatest extent that the
ground affects the body, and the majority of dynamic studies are focused on different
characteristics of VGRF between patients with PD and controls [35,54]. The result of the
present study compared to literature data on dynamic studies showed that to catch a
difference between PD and HS a more deep dynamic analysis is necessary, like asymmetry
between the two sides [35], or analysis not only of the global GRF but of the dynamics of
the individual foot sensors sections (e.g., forefoot heel) [34].

The novelty of the present study is in the direct comparison of the two kinds of gait
analysis (dynamic and kinematic). Despite kinematics features like acceleration that are
directly proportional to dynamic features like ground reaction force, the results of this
study showed the so-called force/rhythm dichotomy, since kinematic features were more
informative than dynamic ones. In literature, the two kinds of analysis are very well
described, with a lack of a direct comparison between the two on the same data. The limits
of the present study, which are related to the source of data that comes from available
datasets of previous studies, are the inhomogeneity of gait duration protocol across cohorts
and the younger age of HS of cohort 4 with respect to other subjects. Therefore, future
clinical trials are needed to confirm these results and additional approaches could be
devoted to applying machine learning algorithms to more precisely assess and combine
kinematics and dynamics parameters, and weigh the impact of single features.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/s22228773/s1, Video S1: Average gait cycle dynamic, in healthy
subjects (HS) and Parkinson's disease (PD) group.
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