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Abstract: Introduction: The present study explores brain connectivity in Parkinson’s disease (PD)
and in age matched healthy controls (HC), using quantitative EEG analysis, at rest and during a
motor tasks. We also evaluated the diagnostic performance of the phase locking value (PLV), a
measure of functional connectivity, in differentiating PD patients from HCs. Methods: High-density,
64-channels, EEG data from 26 PD patients and 13 HC were analyzed. EEG signals were recorded
at rest and during a motor task. Phase locking value (PLV), as a measure of functional connectivity,
was evaluated for each group in a resting state and during a motor task for the following frequency
bands: (i) delta: 2–4 Hz; (ii) theta: 5–7 Hz; (iii) alpha: 8–12 Hz; beta: 13–29 Hz; and gamma: 30–60 Hz.
The diagnostic performance in PD vs. HC discrimination was evaluated. Results: Results showed no
significant differences in PLV connectivity between the two groups during the resting state, but a
higher PLV connectivity in the delta band during the motor task, in HC compared to PD. Comparing
the resting state versus the motor task for each group, only HCs showed a higher PLV connectivity in
the delta band during motor task. A ROC curve analysis for HC vs. PD discrimination, showed an
area under the ROC curve (AUC) of 0.75, a sensitivity of 100%, and a negative predictive value (NPV)
of 100%. Conclusions: The present study evaluated the brain connectivity through quantitative EEG
analysis in Parkinson’s disease versus healthy controls, showing a higher PLV connectivity in the
delta band during the motor task, in HC compared to PD. This neurophysiology biomarkers showed
the potentiality to be explored in future studies as a potential screening biomarker for PD patients.

Keywords: quantitative EEG analysis; high density EEG; brain connectivity; phase locking value
(PLV); Parkinson’s disease; biomarkers

1. Introduction

The diagnosis of Parkinson’s disease (PD) is currently based on the clinical evaluation
Poewe, et al. [1] of the cardinal motor symptoms, bradykinesia, rest tremor, and rigidity,
which represent the hallmarks for the in vivo diagnosis [2] according to the current diagnos-
tic criteria for PD [3]. Different strategies have been explored to characterize PD features in
a non-invasive way. One first approach is to follow the clinical diagnostic pathway trying
to make clinical evaluations of motor symptoms more objective and quantitative, through a
motion analysis technique able to characterize PD motor symptoms [4–6], such as bradyki-
nesia [7–9], tremors [10–13], rigidity [9,14–16], and axial symptoms, such as gait, balance,
and postural issues [17–22], also with the support of machine learning algorithms [23–27].
Another possible approach is to explore the brain activities that underly and determine the
PD symptoms, which are characterized by pathological oscillatory activities [28,29] and
have been widely used to manage therapy, such as deep brain stimulation [30,31], but can
be used also as a proxy for PD neurophysiology biomarkers identification.
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In this context, neurophysiological tests may help to better understand the patho-
physiology of PD, and their low cost, brief execution times, and the wide diffusion among
hospitals represent a competitive advantage in respect to other techniques to support PD
biomarkers identification in clinical practice.

Brain connectivity is a method to explore the way how different brain regions interact
and communicate with each other. The degeneration of nigrostriatal dopaminergic neurons,
which is the hallmark of the pathophysiology of PD, leads to the dysfunction of the basal
ganglia–thalamo-cortical pathway, which underlies the PD motor symptoms [32].

Resting state functional MRI (RS-fMRI) can be used to study the connectivity among
different brain areas in PD patients. A meta-analysis of RS-fMRI connectivity studies in PD
patients [33], showed a decreased functional connectivity within the posterior putamen.
The functional network involving this area and its cortical projections can be modulated by
levodopa administration [32–34].

Among the neurophysiological techniques, electroencephalogram (EEG) is one of the
most versatile and widely available techniques, it offers good balance between the temporal
and spatial resolution, meaning that this technology is most frequently used in studies on
PD biomarkers.

In de novo PD patients, compared to controls, a reduced coherence in α-β EEG
frequency bands and a hyperconnectivity in γ band were observed [35].

Exploring dynamic networks between neuronal populations in a quantitative way,
by noninvasive electrophysiological mapping with EEG, could unveil crucial information
about brain connectivity in PD and subsequently, improve the diagnostic process.

Nonlinear and nonstationary systems may be analyzed with the phase locking method-
ology [36]. Indeed, the brain can be compared to a nonlinear dynamic system and, as such,
the phase locking approach can be used for the scope [36–38]. Phase locking value (PLV)
is a non-linear measure of pairwise functional connectivity (Lee, Liu et al., 2019), used to
quantify the phase coupling between two biological nonlinear signals in a time-series, such
as electroencephalographic signals [39]. A high PLV between two brain regions indicates a
high synchrony [40].

The present study aims at investigating brain connectivity, through quantitative EEG
analysis in Parkinson’s disease versus healthy controls, at rest and during a motor task,
exploring the performance of the phase locking value (PLV) in discriminating the two
study groups.

2. Methods
2.1. Patients and Data Collection

The database and EEG data utilized in this study were obtained from the University of
Iowa Hospitals & Clinics (UIHC) Movement Disorders Clinics [41]. The database contains
high-density EEG (HD-EEG) [42] data from 26 patients with PD and 13 demographically
matched healthy controls (HCs). All patients in the experiment met the UK Parkinson’s
Disease Brain Bank criteria for the diagnosis of idiopathic PD [43]. All patients underwent
neuropsychological evaluation using the Montreal cognitive assessment (MOCA), EEG
signals were recorded at rest and during a specific lower-limb pedaling motor task [41]
using a customized 64-channels cap (EASYCAP GmbHAm Anger, 582237 Woerthsee-
Etterschlag, Germany) with a high-pass filter of 0.1 Hz and a sampling rate of 500 Hz
(Brain Products). Online reference and ground channels were Pz and FPz, respectively.
Patients and HCs were both instructed to perform a lower-limb motor task during the EEG
recording. Therefore, for each subject we analyzed the EEG recorded in both conditions
(i.e., Resting State and Motor Task).

2.2. Quantitative EEG Analysis

Quantitative EEG analysis was performed using the Brainstorm Toolbox for MATLAB
(Tadel et al., 2011) (The Math Works Inc., Natick, MA, USA), and in home MATLAB code.
Offline data pre-processing was performed using Brainstorm and included: (i) DC removal;
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(ii) 60-Hz notch filter; (iii) bandpass filter between 1 and 70 Hz (linear phase finite impulse
response filter); (iv) EEG re-reference to average; (v) and correction for pulse and eye-blink
artifacts using independent component analysis [44,45].

2.3. EEG Connectivity Analysis

To assess the differences in brain networks among PD and HCs we performed a
measure of EEG functional connectivity. We selected a total of 180 s continuous epoch from
the EEG recordings free from relevant artifacts for further analysis [46,47]. As a measure of
connectivity, we computed the phase locking value (PLV). PLV is an important measure
of synchronization when studying bio-signals and especially electrical brain activities. It
is a measure of non-directional frequency-specific synchronization reflecting long-range
integrations and it assesses the extent to which the phase difference between two signals
changes over time [36,37,48].

Taking into account the lack of consensus in the classification of frequency bands for
quantitative EEG analysis [47], starting from the most recent International Pharmaco-EEG
Society (IPEG; [49]) recommendations, also endorsed by the International Federation of
Clinical Neurophysiology recommendations on frequency and a topographic analysis of
resting state EEG rhythms [47], the final frequency band selected for the phase locking
value connectivity analysis was based on the frequency band employed in several previous
studies [45,46,48] in which, with respect to the IPEG recommendation, was selected the fastest
delta band 2–4 Hz and a restricted theta band 5–7 Hz. We measured the PLV for all possible
channel combinations and averaged to obtain a measure of global connectivity [46,48] for the
following frequency bands: delta: 2–4 Hz; theta: 5–7 Hz; alpha: 8–12 Hz; beta: 13–29 Hz;
and gamma: 30–60 Hz. Connectivity analysis was performed separately for the resting
state EEG and for the EEG recorded during the lower limb pedaling motor task.

2.4. Statistical Analysis

Statistical analysis was performed using the R statistical package [50] and MATLAB
(Mathworks). Data distribution was checked by means of a Kolmogorov–Smirnov test. The
differences in Global Connectivity among PD and HCs was tested using a three-way aligned
rank transformed (ART) ANOVA for non-parametric factorial three-way designs [51] with
Frequency (five levels: delta, theta, alpha, beta, gamma), Group (two levels: PD and HCs)
and Condition (two levels: resting state and motor task) as within the subject factor. A
Bonferroni correction was used for post-hoc tests of multiple comparisons when needed.

To estimate the clinical value of EEG connectivity for differentiating between PD and
HCs, we built receiver operating characteristic (ROC) curves on the PLV connectivity values
for each frequency band and for each condition (i.e., resting state and motor task).

The following performance metrics were estimated in terms of outcome prediction:
(i) sensitivity (ii) specificity, (iii) positive predictive value, (iv) negative predictive value;
and (v) accuracy. The ROC curve point showing the highest combination of predictive
values was selected as the optimum cut-off value to differentiate PD vs. HCs. Finally, we
built non-parametric ROC curves to estimate 95% confidence intervals (CIs) for the area
under the curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative
predictive value (NPV), and accuracy. CIs were validated using 10,000 stratified bootstrap
replicates [52]. Moreover, a Spearman correlation test was used to assess the correlation
between MOCA scores and the PLV in each frequency band. Significance level was set at
p < 0.05. Results are reported as the mean ± standard deviation unless differently stated.

3. Results
3.1. Patient Cohort and Control Group

PD patients (nine females and 17 males) had a mean disease duration of 6.2 years
(SD: ±3.7), a mean age of 67.3 years (SD: ±9.2), a UPDRS III score of 14.8 (SD: ±7.1), and a
MOCA score of 23.3 (SD: ±3.9). The healthy controls (five females and eight males) had a
mean age of 68.9 years (SD: ±8.2) [41].
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3.2. Comparison between PD and Control Groups
3.2.1. EEG Connectivity

The comparison between PD and HCs revealed no significant differences between
groups (factor group: F(1,370) = 0.76, p = 0.38), but a significant group by frequency interaction
(F(4,370) = 3.62, p < 0.005; Figure 1), related to a higher connectivity in the delta frequency
band for HCs compared to PD (Bonferroni corrected p = 0.04; Figure 2). We also found
lower connectivity values in the gamma frequency band for HCs compared to PD, although
with a borderline level of significance (Bonferroni corrected p = 0.05; Figure 2).
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Figure 1. Phase locking value (PLV) connectivity topoplot and comparison between Parkinson
Disease (PD) and Healthy Control (HC). PLV is expressed as the average across channels to obtain a
measure of global connectivity. Notice how PLV in the delta range is higher in HC compared to PD.
*: p < 0.05.

The ART ANOVA considering condition and frequency, as within the subject factor,
showed a significant condition effect (F(1,370) = 10.77, p = 0.001), related to higher global
connectivity values during the motor task compared to the resting state. A significant group
by condition interaction was also found (F(1,370) = 5.33, p = 0.02). Post-hoc tests revealed a
significant difference in connectivity values during the motor task compared to the resting
state in HCs (Bonferroni corrected p = 0.004; Figure 3), as opposed to PD patients who
did not reach the statistical significance (p = 0.18). We also found a significant condition by
frequency interaction (F(4,370) = 3.48, p = 0.008; Figure 3), related to higher delta connectivity
values during the motor task, as opposed to the resting state (Bonferroni corrected p = 0.03;
see Figure 3). Finally, we found no correlation between the PLV connectivity values and
MOCA scores in each frequency band (p > 0.05).

3.2.2. ROC Curve Analysis

The ROC curve analysis showed that the PLV connectivity analysis in the delta fre-
quency band during the motor task band was able to differentiate HC from PD (Figure 4)
with an area under the curve (AUC) of 0.75 (95% CI, 0.58–0.89), a sensitivity of 100%
(95% CI, 100–100%), a specificity of 50% (95% CI, 31–69%), a PPV of 50% (95% CI, 42–62%),
an NPV of 100% (95% CI, 100–100%), and an accuracy of 66.7% (95% CI, 54–79%).
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Figure 2. Boxplot distribution of the phase locking value (PLV) connectivity values between Parkinson
disease (PD, red) and healthy control (HC, blue) across different frequency bands during the motor
task. Black lines represent median values. Dots denote values that are farther than 1.5 interquartile
ranges. Notice how PD subjects present a lower delta connectivity (p = 0.04) and a higher gamma
connectivity, although with a borderline level of significance (p = 0.05). *: p < 0.05.
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Figure 3. Boxplot distributions of the phase locking value (PLV) mean connectivity values. Boxplot
distributions of the mean PLV values for different frequency bands across Groups: Parkinson disease
(PD) vs. healthy control (HC) and conditions: motor task (red) vs. resting state (blue). Black
lines represent median values. Dots denote values that are farther than 1.5 interquartile ranges.
Connectivity values were significantly higher during the motor task compared to the resting state in
HC (p = 0.004), as opposed to PD (p = 0.18). *: p < 0.05.
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Figure 4. Receiver operating characteristic (ROC) curve (black line) (left image) and confusion matrix
(right image) of the phase locking value (PLV) in the delta frequency band during the motor task
for the classification of healthy controls (HCs) and Parkinson disease (PD) patients in our cohort.
Non-parametric ROC curve (blue line), binormal ROC curve (red line) and 95% confidence interval
(C.I.; dotted lines) are shown. AUC = area under the curve. CI = confidence interval. TPR = true
positive ratio; FPR = false positive ratio.

4. Discussion

In the present study, we evaluated brain connectivity through a quantitative EEG
analysis in Parkinson’s disease versus healthy controls, at rest and during a pedaling
motor task, exploring the diagnostic performance of the phase locking value (PLV) in
discriminating the two study groups.

In the literature, few studies explored the PLV analysis in the PD population. Bertrand,
McIntosh, Postuma, Kovacevic, Latreille, Panisset, Chouinard and Gagnon [40] compared
the baseline resting state EEG of healthy subjects and PD patients, and after a follow-up
classified the PD patients who developed dementia and patients who did not developed
dementia. The results were assessed in terms of both signal synchrony and variability at
different timescales, respectively, and statistically expressed by the PLV and multiscale
entropy (MSE). In the delta frequencies, the PLV was lower in the PD who developed
dementia compared to the PD without dementia and controls, while, for the beta and
gamma frequencies, the PD-dementia patients showed a higher PLV when compared with
the PD-non dementia patients, and both groups showed a higher PLV when compared to
the controls. Conversely, the signal variability was lower at the higher frequencies and
higher at the lower ones.

The main hypothesis in Gerardo Sánchez-Dinorín et al.’s [53] research was that func-
tional connectivity abnormalities could predict cognitive decline in Parkinson’s disease.
The study showed that the increased synchrony of frontal slow waves predicts cognitive
decline in PD patients after less than a decade with the illness [53].

In Soojin Lee et al.’s [54] study, the PLV was employed to evaluate the effect of
dopaminergic medication and electrical vestibular stimulation (EVS) in Parkinson’s disease.
While levodopa medication was effective in normalizing the mean PLV only, all EVS stimuli
normalized the mean, variability, and entropy of the PLV in the PD subject, demonstrat-
ing both low- and high-frequency EVS exert widespread influences on cortico-cortical
connectivity [54].

In the present study, the results showed no significant differences in the PLV connec-
tivity between the two groups (PD vs. HCs) during the resting state, but a higher PLV
connectivity in the delta band during the motor task in the HCs compared to PD. In addi-
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tion, comparing the resting state versus motor task for each group, only in the HC results
showed a higher PLV connectivity in the delta band during the motor task. These results
showed a deficit for the PD subjects in modulating the delta band PLV brain synchrony
during movement, in contrast with the healthy controls. In addition, in our study the PLV
connectivity was not correlated with cognitive performance.

These preliminary results also show that the higher value of the PLV during the motor
task could be a potential useful tool as a neurophysiological connectivity biomarker for PD.
Considering the ROC AUC of 0.75, which indicates a good discrimination performance, the
sensitivity of 100%, indicating the ability to identify a high number of patients potentially
affected by PD, and a NPV of 100% indicating the ability to exclude only truly HCs,
combined with its lower specificity and PPV, leads this predictor to be the candidate as a
screening biomarker.

The main limitations of the study are the small number of the sample, the type of
motor task which was not compared to different motor tasks of lower limbs or tasks of
upper limbs, and in line with the lack of consensus in the classification of frequency bands
for the quantitative EEG analysis [47], the specific band selected for the present study
can be a limitation, therefore further studies are needed to confirm the results and the
proposed applications.

5. Conclusions

The present study evaluated the brain connectivity through a quantitative EEG analysis
in Parkinson’s disease versus healthy controls, showing a higher PLV connectivity in the
delta band during the motor task in the HCs compared to PD. This neurophysiology
biomarker showed the potentiality to be explored in future studies as a potential screening
biomarker for PD patients.
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